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Abstract. Production matrices have become established as a general par-
adigm for calculating the genus polynomials for linear sequences of graphs.
Here we derive a formula for the production matrix of any of the linear
sequences of graphs that we call ladder-like, where any connected graph H
with two 1-valent root-vertices may serve as a super-rung throughout the
ladder. Our main theorem expresses the production matrix for any ladder-
like sequence as a linear combination of two fixed 3×3 matrices, taken over
the ring of polynomials with integer coefficients. This leads to a formula
for the genus polynomials of the graphs in the ladder-like sequence, based
on the two partial genus polynomials of the super-rung. We give a closed
formula for these genus polynomials, for the case in which all imbeddings
of the super-rung H are planar. We show that when H has Betti number
at most one, all the genus polynomials in the sequence are log-concave.

1. Introduction

Given any graph (H, u, v) whose root-vertices u and v are both 1-valent we
construct a sequence of graphs

(1.1) (LH
1 , u1, v1), (LH

2 , u2, v2), (LH
3 , u3, v3), . . .

recursively, as follows:

• The graph (LH
1 , u1, v1) is isomorphic to (H, u, v).

• We construct the graph (LH
n+1, un+1, vn+1) from the graph (LH

n , un, vn)
and a copy of the graph (H, u, v), in which the roots u and v are
renamed un+1 and vn+1, respectively, by joining the vertex un to the
new root un+1 and joining the vertex vn to the new root vn+1.
• Only the vertices un+1 and vn+1 are regarded as roots of LH

n+1.
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We call each of the graphs LH
n a ladder-like graph with super-rung H,

and we call the sequence (1.1) a ladder-like sequence.

In Figure 1.1 we see a particular such graph H and the ladder-like graph LH
4 .

We have suppressed the vertex names that are not roots and are not essential
to what follows. We represent H by a “blob with two pendant edges”.

H LH4

u u4

v4v

Figure 1.1. A ladder-like graph with super-rung H.

Ladder-like sequences are a special case of linear sequences of graphs, which
are the focus of many papers since [FGS89] gave the two initial examples and
Stahl [Stah91] expanded the idea. The most general formulation to date is
given by [CGMT16]. Here we will concentrate only on ladder-like sequences.

The genus polynomial of a graph G is the generating function

ΓG(z) = g0(G) + g1(G)z + g2(G)z2 + · · ·

where gi(G) is the number of different cellular imbeddings ofG in the orientable
surface Si, of genus i. We are concerned here exclusively with finite graphs, in
which case the genus polynomial is a finite polynomial. The smallest number
i such that gi(G) is non-zero is called the minimum genus of the graph, in
which case we write γmin(G) = i. The largest number j such that gj(G) is
non-zero is called the maximum genus, and we write γmax(G) = j.

Since calculation of the minimum genus is NP-hard [Th89], it follows that
calculation of the genus polynomial is at least NP-hard. By way of contrast,
the maximum genus can be calculated in polynomial time [FGM88]. We also
know that every surface whose genus lies between the minimum genus and
the maximum genus, there is at least one imbedding [Du66]. It has been
conjectured [GRT89] that the genus polynomial of every graph is log-concave.
Most of the families of graphs for which this conjecture has been confirmed
are linear sequences.

In this paper, our main result, Theorem 4.1, gives a recurrence relation for
the genus polynomial of every graph in any ladder-like sequence of graphs,
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based on the two partial genus polynomials for the super-rung H, no mat-
ter how high the degrees of these two polynomials. For the case in which
γmax(H) = 0, we derive conditions on H under which every graph in the cor-
responding ladder-like sequence has a log-concave genus polynomial.

Partial genus polynomials are developed in full generality in [GKMT15].
General background in topological graph theory is provided by [GrTu87]. We
denote the valence of a vertex v in the graph G by valG(v) or val(v).

2. Imbedding Types for Graphs

When the graph G has one or more root-vertices, the imbeddings of G are
partitioned into imbedding types (abbreviated as i-types), according to the
incidence of face-boundary walks (abbr. fb-walks) at a designated set of root-
vertices. An i-type is denoted by a string of cyclic sequences, such that for
each fb-walk that is incident on any of the root-vertices, the i-type includes a
cyclic string that lists the incidences of (designated) roots in the order in which
they occur in an orientation-respecting traversal. This fully general system of
notation for i-types was introduced in [GKMT15], which refined the earlier
notational system of [Gr14].

The i-types for a rooted graph (G, v1, v2, . . . , vr) follow two rules, both of
which are self-evident from the definitions:

(1) Each i-type partitions the multi-set of occurrences of root-vertices along
the fb-walks into cycles.

(2) The total number of times that a given root-vertex occurs in any i-type
equals its valence.

To simplify discussion in what follows, we describe three notational conven-
tions established by [GKMT15], which give us a standard notation for an
i-type.

(1) When representing an fb-walk by a cycle, we choose the starting point
such that the written form of the cycle is lexicographically least.

(2) Within the sequence of cycles that represents an i-type, if j < k, then
a j-cycle precedes a k-cycle

(3) Within the sequence of cycles that represents an i-type, the cyclic
strings of the same length are ordered lexicographically.

Proposition 2.1. Each of the imbeddings of the graph (H, 0, 1) is either of
i-type (0)(1) or of i-type (01).

Proof. The only possible ways to partition the multi-set {0, 1} into cycles are
(0)(1) and (01). �
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Proposition 2.2. Using 0 for un and 1 for vn as notations for the root-vertices
of the ladder-like graph LH

n , the possible i-types, for n ≥ 2 are

(00)(11), (01)(01), and (0011).

Proof. For two 2-valent roots, here are the ten possible i-types, each a cyclic
partition of a multi-set of two 0’s and two 1’s.

(0)(0)(1)(1) (0)(0)(11) (0)(1)(01) (1)(1)(00) (0)(011)
(1)(001) (00)(11) (01)(01) (0011) (0101)

Since the roots 0 and 1 are both 2-valent and form a cutset, it follows, as
illustrated in Figure 2.1, that an i-type for LH

n has no 1-cycles. That eliminates
the first six cyclic partitions shown above. The i-type (0101) cannot occur,
because it would represent an fb-walk that goes in the same direction twice
at each of two cutpoints (i.e., 0 and 1) instead of once each way at each
cutpoint. This leaves only the i-types (00)(11), (01)(01), and (0011). In
previous papers, the following mnemonic notations were used for these three
respective i-types:

ss0, dd′′, and ss1. �

0

(00)(11)
1

0

(0011)

0

(01)(01)
1

Figure 2.1. Root incidences along the fb-walks of the imbeddings of a
ladder-like graph.

The partitioning of the set of imbeddings into i-types leads to a partitioning
of the genus polynomial for each of the graphs into a set of partial genus
polynomials. The larger our designated set of roots, the great the number of
i-types. A formula for the number of i-types of any number of roots of any
valences is given by Theorem 6.3 of [GKMT15]. Tables 6.1 and 6.2 of that
paper give the numbers of possible i-types for some smaller numbers of roots
and some smaller valences. Unsurprisingly, the number of i-types grows rapidly
with increasing numbers of roots or increasing valences.

The partition of the genus polynomial is given by a column vector called
the pgd-vector (“pgd” stands for “partitioned genus distribution”) with one
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coordinate for each i-type. That coordinate is a partial genus polynomial
that enumerates the number of imbeddings of that i-type in the orientable sur-
faces of varying genera. The coordinates of a pgd-vector are ordered according
to the lexicographic ordering of the induced partitions for the set of i-types.

Example 2.1. Suppose that we take the “blob” in Figure 1.1 to be a 2-cycle.
Since H has two 3-valent vertices and two 1-valent vertices, the total number
of imbeddings of H is (3− 1)!(3− 1)!(1− 1)!(1− 1)! = 4. Two of them are of
i-type (0)(1) and two are of i-type (01). The partial genus polynomials are

Γ
(0)(1)
H (z) = 2 and Γ

(01)
H (z) = 2.

The pgd-vector of H is [
2
2

]
.

Example 2.2. Using the graph H of the Example 2.1 as the super-rung, the
graph LH

2 has four 3-valent vertices, so there are 24 = 16 imbeddings. They
partition into four of i-type (00)(11) in S1, four of i-type (01)(01) in S0, and
eight of i-type (0011) in S1. Thus, the pgd-vector of LH

2 is4z
4
8z

 .

3. Production Matrices

In general, a linear sequence of graphs is specified by an initial graph and
a topological operation by which each graph in the sequence is transformed
into the next graph. We require that each graph in the sequence has the
same number of roots of each valence. In a ladder-like sequence, the two roots
of each sequence are both 2-valent. The production matrix MLH (z) for
the ladder-like sequence LH

n is a matrix such that for all n ≥ 2, multiplying
the pgd-vector for LH

n by MLH (z) produces the pgd-vector for LH
n+1. Each

column of the production matrix represents a rule, called a production, that
describes, for each i-type of LH

n and for any given imbedding of that i-type,
the number of imbeddings of each i-type of LH

n+1 that are derivable from the
given imbedding.

Example 2.2, continued. For instance, let us consider the set of imbeddings
of LH

n+1 that can be derived from an imbedding of LH
n of i-type (00)(11). There

are two corners at the root un at which to attach the edge whose other endpoint
is un+1, and two corners at vn at which to attach the edge whose other endpoint



6 CHEN, GROSS, MANSOUR, AND TUCKER

is vn+1. Since there are two possible rotations at each of the two 3-valent
vertices of the next copy of the super-rung H, that makes a total of 24 = 16
imbeddings of LH

n+1 that are derivable from any given imbedding of LH
n , no

matter what its i-type. As is happens, four of those imbeddings of LH
n are of

i-type (00)(11), with a genus increment of one, four of i-type (01)(01) with
no genus increment, and four of i-type (0011) with a genus increment of one.
Accordingly, we write the following production:

(01)(01) → 4z(00)(11) + 4(01)(01) + 8z(0011).

The power of the indeterminate z indicates the genus increment. For the other
two i-types, we have the following two productions:

(00)(11) → 8z(00)(11) + 8z(0011) and

(0011) → 8(01)(01) + 8z(0011).

In a number of papers on linear families of graphs, the productions have
been derived by face-tracing. A more recently invented method involving the
use of string-operations is described in the next section.

If there are n i-types, then we can represent the collective action of the
productions by an n × n production matrix. For Example 2.2, with three
i-types, the production matrix is8z 4z 0

0 4 8
8z 8z 8z

 .

4. General Production Matrix for Ladder-Like Graphs

The following theorem, our main theorem, presents a pair of 3× 3 matrices
and establishes a way to express the production matrix for any ladder-like se-
quence as a linear combination of those two matrices, such that the coefficients
of the two matrices are the partial genus polynomials of the super-rung.

Theorem 4.1. Let (H, 0, 1) be any graph with two 1-valent root vertices. Let
p(z) and q(z) be the partial genus polynomials for H of i-types (0)(1) and
(01), respectively. Then the production matrix for the ladder-like sequence
LH
1 , L

H
2 , L

H
3 , . . . is

(4.1) MLH (z) = p(z)

4z 2z 0
0 0 0
0 2z 4z

 + q(z)

 0 0 0
0 2 4
4z 2z 0

 .
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Proof. We first give a proof with figures, similar to proofs appearing in many
previous papers. We follow this proof with a completely symbolic calculation
of the production matrix for a sequence of ladder-line graphs, using symbolic
manipulation rules first described in [GKMT15].

First proof. There are three possible i-types for the ladder-like graph LH
n

and two possible i-types for the super-rung H. Every imbedding of LH
n+1

results from an imbedding of LH
n and an imbedding of H. We will use three

productions to describe the results of extending an imbedding of LH
n by an

i-type (0)(1) imbedding of LH
n+1 and three more to describe the results of using

an imbedding of H of i-type (01) to make the extension. Consequently, we
need six productions to derive the production matrix ML

H(z) that maps the
pgd-vector for LH

n to the pgd-vector for LH
n+1.

Each of the six figures of derivations of productions is actually a conden-
sation of a derivation by string operations, as developed in [GKMT15]. We
continue to represent the super-rung H by a blob with two pendant edges. At
intermediate stages of the string-operations derivations, roots of LH

n and roots
of LH

n+1 may be present simultaneously.

Remark. To avoid confusion from any ambiguities, we use 0 and 1 to denote
the roots of LH

n , and we denote the root-vertices of H by 0 and 1.

i-type (0 0)(1 1). Figure 4.1 illustrates the derivation of the production for
combining i-types (0 0)(1 1) and (0)(1). Different colors are used to indicate
different fb-walks. There are two stages to the derivation. We proceed from
the initial configuration (at the left) to the intermediate configuration (in the
middle) by joining root 0 of LH

n by the edge e1 to the root-vertex 0 of H. Then
we proceed the from the intermediate configuration to the final configuration
(at the right) by joining root 1 of LH

n by the edge e2 to the root-vertex 1 of H.

0

1

0

1

0

1

e1 e1

e2

0

1 1

Figure 4.1. Combining i-types (0 0)(1 1) and (0)(1) to get (00)(11).

There are two locations at which the edge e1 could be joined to the ver-
tex 0, with the other location “inside the right angle”. Since there are p(z)
imbeddings of H of i-type (0)(1), then so far, from each imbedding of i-type
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(0 0)(1 1) of LH
n , we have 2p(z) imbeddings of i-type (00)(1 1)(1) for the in-

termediate configuration. In the figure, we suppress the label at root 0 and
we replace the hollow dot that indicates a root by a solid dot that indicates a
non-root.

Similarly, when we join the the root 1 to the root 1 by the edge e2, there
are two locations at which e2 could be joined to root 1. For either location,
the resulting imbedding has the same type. We observe that adding edge e2
reduces the number of faces by one. Thus, the genus of the surface increases
by one. The second edge-addition yields two imbeddings of type (00)(11). In
summary, we have derived the production

(4.2) (0 0)(1 1)→ 4zp(z)(00)(11).

Figure 4.2 illustrates the derivation of the production for combining i-types
(0 0)(1 1) and (01).

0

1

0

1

0

1

e1 e1

e2

0

1 1

Figure 4.2. Combining i-types (0 0)(1 1) and (01) to get (0011).

Joining an imbedding of i-type (0 0)(1 1) to q(z) imbeddings of i-type (01) by
edge e1 gives us 2q(z) imbeddings of i-type (001)(1 1). Then adding edge e2
gives two imbeddings of i-type (0011), for each imbedding of i-type (001)(1 1).
This results in the following production:

(4.3) (0 0)(1 1)→ 4zq(z)(0011).

We can combine the productions (4.2) and (4.3) to form the combined pro-
duction that describes the effect of adding the next copy of the super-rung H
to an imbedding of i-type (0 0)(1 1):

(4.4) (0 0)(1 1)→ 4zp(z)(00)(11) + 4zq(z)(0011).

i-type (0 1)(0 1). We now consider joining an imbedding of LH
n of i-type

(0 1)(0 1) to an imbedding of H of i-type (0)(1). When we join vertices 0 and 0
by edge e1, we get 2p(z)(001)(1)(1).
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Adding edge e2 is slightly trickier, because the two different locations at
which to attach edge e2 to the root-vertex 1 yield imbeddings of different types,
as indicated by Figure 4.3. An imbedding of i-type (001)(1)(1) transforms into
one imbedding of i-type (00)(11) and another of i-type (0011). This is the
resulting production:

(4.5) (0 1)(0 1)→ 2zp(z)(00)(11) + 2zp(z)(0011).

0

1

0

1

0

1

e1 e1

e2
0

1

e1

e2

1

0

1

Figure 4.3. Combining (0 1)(0 1) and (0)(1) to get (0011) and (00)(11).

The consequent of the production for combining i-type (0 1)(0 1) for LH
n with

i-type (01) for H also splits into two cases, as shown in Figure 4.4. Here the
production is

(4.6) (0 1)(0 1)→ 2q(z)(01)(01) + 2zq(z)(0011).

When we combine (4.5) and (4.6), the resulting complete production for
adding the super-rung H to an i-type (01′)(01′) imbedding is

(4.7) (0 0)(1 1)→ 2zp(z)(00)(11) + 2q(z)(01)(01) + 2z(p(z) + q(z))(0011).

i-type (0 0 1 1). Combining i-type (0 0 1 1) for LH
n with i-type (0)(1) for H

is illustrated by Figure 4.5. We have the following production:

(4.8) (0 0 1 1)→ 4zp(z)(0011).
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0

1

0

1

0

1

e1 e1

e2
0

1

e1

e2

1

0

1

Figure 4.4. Combining (0 1)(0 1) and (01) to get (01)(01) and (0011).

0

1

0

1

0

1

e1 e1

e21 1

0

Figure 4.5. Combining i-types (0 0 1 1) and (0)(1) to get (0011).

The last case to consider is combining i-type (0 0 1 1) for LH
n with i-type (01)

for H. As shown by Figure 4.6, the consequent has only one term.

(4.9) (0 0 1 1)→ 4q(z)(01)(01).

The complete production for i-type (0 0 1 1) is

(4.10) (0 0 1 1)→ 4q(z)(01)(01) + 4zp(z)(0011).

We can represent the three productions (4.4), (4.7), and (4.10) as the columns
of a single production matrix MLH (z) that maps the pgd-vector for LH

n to the
pgd-vector for LH

n+1.

MLH (z) =

4zp(z) 2zp(z) 0
0 2q(z) 4q(z)

4zq(z) 2zp(z) + 2zq(z) 4zp(z)
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0

1

0

1

0

1

e1 e1

e21 1

0

Figure 4.6. Combining i-types (0 0 1 1) and (01) to get (01)(01).

Splitting the matrix MLH (z) into the following sum completes the first proof.

MLH (z) = p(z)

4z 2z 0
0 0 0
0 2z 4z

 + q(z)

 0 0 0
0 2 4
4z 2z 0

 �

Second proof. We now compute the production matrix symbolically, without
the pictures. We view the construction of LH

n+1 from LH
n as involving two edge-

adding steps. In the first step, we take an imbedding of LH
n with the three

i-types

(0 0)(1 1), (01)(01), and (0 0 1 1)

and we add the edge 00 to join the imbedding of LH
n to an imbedding of H

with the two i-types (0)(1) and (01). To complete this step, we suppress all
instances of vertex 0, since it plays no further role in the construction of the
graph LH

n+1.

To add an edge uv to an i-type, we have two simple string-processing rules,
which first appeared in [GKMT15], in which the symbols P and Q denote
sequences of vertices that do not include any occurrences of u or v.

Rule 1: to add edge uv within a face

(4.11) (uPvQ)→ (uPv)(vQu)

Rule 2: to add edge uv between two distinct faces of a connected graph

(4.12) (uP )(vQ)→ z(uPuvQv)

We have the extra z in the consequent of Rule (4.12), since adding an edge
between faces of a connected graph requires adding a handle, which increases
the genus by 1. When joining a face of an imbedded graph to a face of another
imbedded graph, no extra handle is needed

Note. Whenever there are multiple occurrences of u or v in any i-types, we
must apply these rules for each pair of occurrences of u and v.
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In particular, when we add the edge 00 to the i-type (0 0)(1 1)(0)(1) where
u = 0 and v = 0, we use Rule (4.12), with P = 0 and Q the empty string.
The vertices 0 and 0 are initially in imbeddings in different surfaces, and we
omit the z, since joining an imbedding in any given surface with a handle to
an imbedding in the sphere does not involve an increase of genus.

In the i-type (0 0)(1 1)(0)(1), there are two occurrences of 0 and one occur-
rence of 0. Applying Rule (4.12), we obtain the production

(0 0)(1 1)(0)(1)→ 2(0 0 0 0 0)(1 1)(1).

Suppressing 0 is represented by the production

2(0 0 0 0 0)(1 1)(1)→ 2(00)(1 1)(1).

Combining these two productions yields the production

(0 0)(1 1)(0)(1)→ 2(00)(1 1)(1).

Since there are p(z) imbeddings of H of i-type (0)(1), a single imbedding of
LH
n of i-type (0 0)(1 1) gives rise to p(z) imbeddings:

(0 0 1)(1 1)(0)(1)→ 2p(z)(00)(1 1)(1).

Similarly, adding an edge into the two other i-types of LH
n , we obtain the

productions

(0 1)(0 1)(0)(1)→ 2p(z)(001)(1)(1) and

(0 0 1 1)(0)(1)→ 2p(z)(001 1)(1).

There are q(z) imbeddings of H of i-type (01). By applying the string-
processing rules in similar fashion to the operation of adding edge 00 between
LH
n and H-type (01), we obtain the productions

(0 0)(1 1)(01)→ 2q(z)(010)(1 1),

(0 1)(0 1)(01)→ 2q(z)(0101)(1), and

(0 0 1 1)(01)→ 2p(z)(0101 1).

We can summarize this with a 6 × 3 matrix with 3 × 3 blocks 2p(z)I and
2q(z)I, where I is the 3× 3 identity matrix, whose columns are labeled by the
three i-types for LH

n

(0 0)(1 1), (0 1)(0 1), and (0 0 1 1)

on 0, 1 and whose rows are labeled by the six intermediate i-types on 1, 0, 1:

(00)(1 1)(1) (001)(1)(1) (001 1)(1)
(010)(1 1) (0101)(1) (0101 1).



GENUS POLYNOMIALS OF LADDER-LIKE SEQUENCES OF GRAPHS 13

The second step of the construction of LH
n+1 is to add the edge 11, in order

to get a final imbedding of LH
n+1. This gives us a 3× 6 matrix, whose columns

are labeled by the six intermediate i-types on 1, 0, and 1 and whose rows are
the three imbedding types for LH

n+1 using 0 and 1.

For step (2), we add edge 11 first to the first three intermediate i-types
(00)(1 1)(1), (001)(1)(1), (001 1)(1) and we suppress all instances of 1.

(00)(1 1)(1)→ 2zp(z)(00)(11)

(001)(1)(1)→ zp(z)(00)(11) + zp(z)(0011)

(001 1)(1)→ 2p(z)(0011)

The result is the matrix p(z)A, where

A =

2z z 0
0 0 0
0 z 2z

 .
When we add edge 11 to the second three intermediate i-types (010)(1 1),
(0101)(1), and (0101 1), we obtain:

(010)(1 1)→ 2zq(z)(0011)

(0101)(1)→ q(z)(01)(01) + zq(z)(0011)

(0101 1)→ 2q(z)(01)(01)

The result is the matrix q(z)B, where

B =

 0 0 0
0 1 2
2z z 0

 .
We conclude that the production matrix for the operation of constructing LH

n+1

from LH
n is 2p(z)A+ 2q(z)B. �

Example 4.1. The easiest example is the usual ladder graph sequence, in
which case the super-rung H is isomorphic to the complete graph K2. Then
p(z) = 0 and q(z) = 1, and Theorem 4.1 implies that the production matrix
for the ladders is

(4.13) MK2
L =

 0 0 0
0 2 4
4z 2z 0

 .
We could delete the first row and the first column, which correspond to i-type
(00)(11), since that i-type does not occur among the imbedding of the ladders.



14 CHEN, GROSS, MANSOUR, AND TUCKER

We thereby obtain this familiar production matrix for the ladders:[
2 4
2z 0

]
.

Remark 4.1. We observe in Equation (4.1) that when p(z) = 0 for the super-
rung H, the production matrix is q(z) times the 3×3 production matrix (4.13)
given in Example 4.1 for the usual ladder sequence. This is what we expect,
for topological reasons, as follows. If there are no imbeddings for H of type
(0)(1), then no path P between 0 and 1 passes through a vertex lying on a
cycle of H. Thus, every edge of H incident to a vertex on path P separates H.
If the removal of an edge from H separates H into components H1, H2, then
by Theorem 5 of [GF87], the genus polynomial for H is a constant times the
product of the genus polynomials for H1 and H2. Thus, the production matrix
is just that for the usual ladder with an extra factor q(z) equal to the product
of all the genus polynomials of the components of H−P times a constant. By
contrast, we note that q(z) = 0 is impossible, since the graph H is connected,
so there is always a face of type (01).

Example 4.2. Let H be the graph of Figure 1.1. We easily calculate the
partial genus polynomials p(z) = 2 and q(z) = 2. It follows from Theorem 4.1
that the production matrix is

(4.14) MLH (z) = 2

4z 2z 0
0 0 0
0 2z 4z

 + 2

 0 0 0
0 2 4
4z 2z 0

 =

8z 4z 0
0 4 8
8z 8z 8z

 .
Corollary 4.2. Let H be any super-rung. Then the determinant of the pro-
duction matrix MLH (z) for the ladder-like sequence LH

1 , L
H
2 , L

H
3 , . . . is zero.

Proof. It is easily checked that the sum of the first and third columns ofMLH (z)
is twice the second column, so the determinant is zero. �

5. Genus Polynomials for Ladder-Like Graphs

In this section, we calculate genus polynomials for the graphs in any ladder-
like sequence, based on the partial genus polynomials for the super-rung.
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5.1. A recursion for the pgd-vectors of a ladder-like sequence. In the
initial graph LH

1 , the root-vertices 0 and 1 are 1-valent. To remedy this incon-
venience, we define the extended super-rung H+ to be the graph obtained
by attaching a pendant edge at the root-vertex 0 and another pendant edge
at the root-vertex 1. In the graph H+, the root-vertices 0 and 1 are 2-valent.
We will use the pgd-vector of the graph H+ as the initial pgd-vector in our
recursion for the pgd-vectors of the graphs in the ladder-like sequence with
super-rung H.

Proposition 5.1. Let the partial genus polynomials of the super-rung (H, 0, 1)
be p(z) for i-type (0)(1) and q(z) for i-type (01). Then the partial genus
polynomials of the extended super-rung (H+, 0, 1) are p(z) for i-type (00)(11),
0 for i-type (01)(01), and q(z) for i-type (0011).

Proof. Clearly, any imbedding of H of type (0)(1) induces an imbedding of H+

of type (00)(11), in the same surface. Similarly, any imbedding of H of type
(01) induces an imbedding of H+ of type (0011) in that same surface. The
conclusion follows. �

Corollary 5.2. Let MLH (z) be the production matrix (4.1), and let [p(z) 0 q(z)]T

be the pgd-vector for the extended super-rung H+. We define

X1 =

p(z)/4
0

q(z)/4

 .
Then the pgd-vector of the graph LH

n is given by MLH (z)n−1X1, for n ≥ 2.

Proof. As illustrated in Figure 5.1 for LH
2 , the extension of LH

n by two pendant
edges has four imbeddings for each imbedding imbedding of LH

n . �

0

1

0

1

0

1

0

1

Figure 5.1. Adding pendant edges quadruples each imbedding of LH
n .

Example 4.2, continued. The ladder-like sequence of Figure 1.1 has the
initial pgd-vector [2 0 2]T and the production matrix (4.14). Therefore, the
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pgd-vector of the graph LH
2 is

(5.1)

8z 4z 0
0 4 8
8z 8z 8z

1
2
0
1
2

 =

4z
4
8z


and the pgd-vector of the graph LH

3 is

(5.2)

8z 4z 0
0 4 8
8z 8z 8z

4z
4
8z

 =

 16z + 32z2

16 + 64z
32z + 96z2T

 .
5.2. Formulas for the genus and partial genus polynomials. In this
section, we derive closed formulas for the partial genus polynomials of a ladder-
like sequence and for the genus polynomial. We recall that the generating
function for the Chebyshev polynomials of the second kind Un(x) is given by

(5.3)
∑
n≥0

Un(x)tn =
1

1− 2xt+ t2
.

For the special case in which the partial genus polynomials of the super-rung
H are constants, p(z) = a and q(z) = b, we prove log-concavity of the genus
polynomials of the ladder-like graphs LH

n whenever a ≤ b.

Theorem 5.3. Let [p(z) q(z)]T be the pgd-vector of the super-rung H, and let

v(z) = 2
√

2z(2zp2(z) + p(z)q(z)− q2(z)).

Then for all n ≥ 2, the pgd-vector MLH (z)n−1X1 of the graph LH
n is given by

vn−1(z)

4


p(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2p(z)(2zp(z)+q(z))

v(z)
Un−2

(
4zp(z)+q(z)

v(z)

)
4q2(z)
v(z)

Un−2

(
4zp(z)+q(z)

v(z)

)
q(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2q2(z)

v(z)
Un−2

(
4zp(z)+q(z)

v(z)

)
 .

Proof. Let LH(t) be the generating function for the pgd-vectors for the graph
LH
n . According to Corollary 5.2, we have

LH(t) =
∑
n≥1

MLH (z)n−1X1t
n−1.

Hence, by using the pgd-vector X1 = [p(z)/4, 0, q(z)/4]T for the graph H+

and the production matrix (4.1), we can calculate that the generating function
LH(t) is given by

1

d

[
1−2t(2zp(z)+q(z))−8zq2(z)t2 2ztp(z)(1− 4ztp(z)t) 8zt2p(z)q(z)

16zt2q2(z) (1− 4ztp(z))2 4tq(z)(1− 4ztp(z))
4ztq(z)(1− 2tq(z)) 2zt(p(z)+q(z)−4ztp2(z)) (1−2tq(z))(1−4ztp(z))

]
,
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where

d = 1− 2(4zp(z) + q(z))t+ 8z(2zp2(z) + p(z)q(z)− q2(z))t2.

Therefore,

LH(t) =
1

4d

[
p(z)− 4ztp2(z)− 2tp(z)q(z), 4tq2(z), q(z)− 2tq2(z)

]T
.

Using the generating function (5.3) for Chebyshev polynomials, we obtain

1

d
=
∑
n≥0

Un

(
4zp(z) + q(z)

v(z)

)
vn(z)tn.

Hence, the coefficient of tn−1 in the generating function LH(t) is given by

LH(t) =
vn−1(z)

4


p(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2p(z)(2zp(z)+q(z))

v(z)
Un−2

(
4zp(z)+q(z)

v(z)

)
4q2(z)
v(z)

Un−2

(
4zp(z)+q(z)

v(z)

)
q(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2q2(z)

v(z)
Un−2

(
4zp(z)+q(z)

v(z)

)
 ,

which completes the proof. �

As corollaries of the above theorem and its proof we derive a recurrence
relation and an explicit formula for the genus polynomial of LH

n .

Theorem 5.4. Let [p(z) q(z)]T be the pgd-vector of the super-rung H, and let

v(z) = 2
√

2z(2zp2(z) + p(z)q(z)− q2(z)).

Then for all n ≥ 2, the genus polynomial gn(z) of the graph LH
n is given by

vn−1(z)

4

[
(p(z) + q(z))Un−1

(
4zp(z) + q(z)

v(z)

)
− v(z)

4z
Un−2

(
4zp(z) + q(z)

v(z)

)]
.

Moreover, the sequence satisfies the recurrence relation

gn(z) = 2(4zp(z) + q(z))gn−1(x)− 8z(2zp2(z) + p(z)q(z)− q2(z))gn−2(x)

with

g2(z) = zp2(z) + 2zp(z)q(z) + q2(z),

g3(z) = 4z2p3(z) + 12z2p2(z)q(z) + 12zp(z)q2(z) + 2zq3(z) + 2q3(z).

Corollary 5.5. Suppose that the maximum genus of the super-rung H is 0,
so that its two partial genus polynomials p(z) = a and q(z) = b, are constants.
If a ≤ b, then the genus polynomial of each of the graphs LH

n is log-concave.
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Proof. Theorem 5.4 establishes that the genus polynomial of the graph LH
n

satisfies the recurrence

gn(z) = (8az + 2b)gn−1(z)− (16a2z2 + 8abz − 8b2z)gn−2(z)(5.4)

for n ≥ 4, with

g2(z) = (a2 + 2ab)z + b2 and

g3(z) = (4a3 + 12a2b)z2 + (12ab2 + 2b3)z + 2b3.

By induction on n, it is not hard to see that the degree of the polynomial
gn(z) is n−1 with leading coefficient 4n−2an−1(a+nb). Then by [LiWa07], the
polynomial gn(z) is LC when a ≤ b. �

Example 4.2, continued. For the super-rung H of this example, we have
p(z) = 2 and q(z) = 2. Substituting these values into the recursion (5.4), we
obtain the recursion

ΓLH
n

(z) = (16z + 4)ΓLH
n−1

(z)− 64z2ΓLH
n−2

(z) for n ≥ 4, with(5.5)

ΓLH
2

(z) = 12z + 4 and

ΓLH
3

(z) = 128z2 + 112z + 16.

We see that the initial values as given by Theorem 5.4 and its corollary agree
with what we calculated in (5.1) and (5.2). Moreover, the recursion above
gives the genus polynomial

ΓLH
4

(z) = (16z + 4)(128z2 + 112z + 16)− 64z2(12z + 4)

= (2048z3 + 2304z2 + 704z + 64)− (768z3 + 256z2)

= 1280z3 + 2048z2 + 704z + 64

which equals the sum of the coordinates of the pgd-vector for LH
4 , as calculated

via Corollary 5.2.

(5.6)

8z 4z 0
0 4 8
8z 8z 8z

16z + 32z2

16 + 64z
32z + 96z2

 =

 256z3z + 384z2 + 64z
768z2 + 512z + 64

1024z3 + 896z2 + 128z

 .
5.3. Some ladder-like sequences with log-concave genus polynomials.
We establish a few kinds of super-rungs for which the corresponding ladder-like
graphs have log-concave genus polynomials.

The simplest families of ladder-like graphs to study are those having a super-
rung (H, 0, 1) with partial genus polynomials p(z) and q(z) for i-types (0)(1)
and (01), respectively, such that p(z) = a and q(z) = b, for constants a, b.
This means the super-rung H is a planar-only graph — that is, all of its
imbeddings are planar, which is equivalent to saying γmax(H) = 0. In what



GENUS POLYNOMIALS OF LADDER-LIKE SEQUENCES OF GRAPHS 19

follows, a cycle in the graph G is a connected subgraph, each of whose vertices
has valence 2, and a path is a connected subgraph with two vertices of valence
one and the others of valence two.

We view imbeddings of the planar-only graph H as being built up from
an imbedding of a smaller subgraph of H, starting from a single edge with
endpoints 0 and 1, using edge-additions within a face or adding an edge to a
new vertex of valence one.

Remark 5.1. Within this process, there are no edge-additions between two
faces, since such an addition would increase the genus by one, and no subse-
quent edge-additions can decrease the genus.

Proposition 5.6. Let (H, 0, 1) be a planar-only graph with root vertices 0, 1
of valence one.
(a) Every subgraph of H is planar-only.
(b) Any two distinct cycles C and C ′ of H are mutually disjoint.
(c) Any imbedding of H obtained by adding an edge to a connected subgraph

imbedding of i-type (0)(1) also has i-type (0)(1).
(d) Suppose that adding an edge uv transforms an imbedding of H of i-type

(01) into one of i-type (0)(1). Then the edge uv lies on a cycle C that
intersects every path in H + uv between u and v.

Proof. For (a), this follows from the observation that edge-adding cannot de-
crease the genus of an imbedding.

For (b), we suppose, by way of contradiction, that cycles C and C ′ in H
intersect, and we suppose that some edge uv is in C, but not in C ′. Then
we extend uv (as a path) in one directions along the cycle C until the first
intersection with a vertex u′ of the cycle C ′, and we extend uv in the other
direction until we meet a vertex v′ of C ′. If u′ = v′, then C ∪ C ′ ∼= B2.
Otherwise, if A is one of the arcs from u′ to v′ in C ′, then A ∪C ′ ∼= D3. That
is, the super-rung H contains a homeomorphic copy either of the bouquet B2 or
of the dipole D3, both of which have imbeddings in the torus, contradicting (a).

For (c), we simply observe that if 0 and 1 are on separate faces of an imbed-
ding, then the only kind of edge-addition that can put them on the same face
must join two faces, and such edge-addition do not occur, as per Remark 5.1.

For (d), we observe that combining the premise of (d) with Rule 4.11 implies
the transformation

(uPvQ)→ (uP )(vQ)

of i-types, for some sequences P and Q of vertices of H with 0 ∈ P and 1 ∈ Q.
Since the sequence P describes a walk from u to v. It follows that there is a
cycle C containing uv and some of the edges along walk P . By the Jordan
curve theorem, the cycle C separates the plane into two components. The face
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with fb-walk (uP ) lies in one component and face with fb-walk (vQ) lies in the
other component, since they lie on opposite sides of the shared edge uv. In
particular, root-vertex 0 lies in one component and root-vertex 1 in the other,
so that every path between 0 and 1 intersects C. �

Theorem 5.7. Let (H, 0, 1) be a planar-only graph with 1-valent roots 0, 1.
Let P be a shortest path between 0 and 1.

(a) Then the intersection of any cycle of H with the path P is empty, a single
vertex, or a path.

(b) Let r be the number of cycles with one-point intersection, and let s be
the number of cycles that intersect P in a path. Then the partial genus
polynomials are

p(z) = (6r4s − 4r2s)N for i-type (0)(1), and

q(z) = 4r2sN for i-type (01),

where N = Πv(dv − 1)!/6r4s.

Proof. Let H ′ be the union of the path P and all of the cycles of H that
intersect path P . Then the subgraph H ′ has exactly r 4-valent vertices, exactly
2s 3-valent vertices, and exactly two 1-valent vertices, namely 0 and 1; all
other vertices of subgraph H ′ are 2-valent. It follows that the subgraph H ′

has (3!)r(2)2s imbeddings. Let N be the number of imbeddings to which each
imbedding of H ′ extends, and let dv denote the valence of a vertex v.

The vertices of H contribute the following factors to the value of N .
(dv − 1)! if v is not in H;

(dv − 1)!

3!
if v is 4-valent in H;

(dv − 1)!

2!
if v is 3-valent in H;

Thus,

N =

∏
v∈VH

(dv − 1)!

6r4s
.

By part (c) of Proposition 5.6, every imbedding of i-type (0)(1) in H ′ extends
only to imbeddings of i-type (0)(1) in H. By part (d), there is no edge-addition
that transforms an i-type (01) imbedding of H ′ into an i-type (0)(1) imbedding
of H, since otherwise, there is a cycle not in H ′ that intersects the path P .

It remains, therefore, to calculate the number of imbeddings of H ′ of each of
the i-types (0)(1) and (01). We have an i-type (01) imbedding of H ′ if and only
if at every intersection of path P with each cycle of H ′, the path P remains
on the same side of that cycle. At each of the r intersections of P with a
cycle at a single vertex (a 4-valent vertex of H ′), there are 4 rotations at that
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vertex for which P remains on the same side of the cycle. For each of the s
path-intersections of path P with a cycle, there are 2 pairs of rotations at the
endpoints of that path (which are 3-valent vertices) such that P remains on the
same side of the cycle. Thus there are 4r2s such rotations in all. The remaining
6r22s − 4r2s imbeddings of H ′ are the imbeddings with i-type (0)(1). �

Corollary 5.8. Let (H, 0, 1) be a planar-only super-rung, so that its partial
genus polynomials are constants. Let p(z) = a be the partial genus polynomial
for i-type (0)(1), and let q(z) = b be the partial genus polynomial for i-type
(01). Furthermore, let P be a path in H between root-vertex 0 and root-vertex 1,
let r be the number of cycles of H at which the incidence of P is a single vertex,
and let s be the number of cycles at which the incidence of P is a subpath of P
with at least one edge. If r+ s ≤ 1, then the genus polynomial of every ladder-
like graph with super-rung H is log-concave.

Proof. It follows from Theorem 5.7 that if 6r4s−4r2s ≤ 4r2s, then a ≤ b. Since
the inequality r + s ≤ 1 implies that 6r4s − 4r2s ≤ 4r2s, it follows, in turn,
from Corollary 5.5, that the genus polynomials of the ladder-like graphs with
super-rung H are log-concave whenever r + s ≤ 1. �

Corollary 5.9. Let (H, 0, 1) be a super-rung whose Betti number β(H) is at
most one. Then the genus polynomial of every graph in the corresponding
sequence of ladder-like graphs is log-concave.

Example 5.1. It follows from Corollary 5.9 that the genus polynomials of the
graphs in Figure 1.1 and Figure 5.2 are log-concave.

H LHn

u

v

Figure 5.2. A ladder-like graph with log-concave genus polynomial.
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6. Summary

This paper continues the pursuit of families of graphs for which genus poly-
nomials can be calculated by recursions or closed formulas. It establishes a
formula for the genus polynomials of the graphs in the ladder-like sequence,
combining the partial genus polynomials of the super-rung. It derives sufficient
conditions on the super-rung H under which each of the the genus polynomials
of the graphs in the ladder-like sequence is log-concave, and it exhibits exam-
ples of super-rungs that satisfy these conditions. In particular, these genus
polynomials are log-concave whenever β(H) ≤ 1.
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